Affiliation:
1. Department of Computational and Applied Mathematics, Rice University, 6100 Main Street, Houston, TX 77005, USA
Abstract
Linearized multiparameter inversion is a model-driven variant of amplitude-versus-offset analysis, which seeks to separately account for the influences of several model parameters on the seismic response. Previous approaches to this class of problems have included geometric optics-based (Kirchhoff, GRT) inversion and iterative methods suitable for large linear systems. In this paper, we suggest an approach based on the mathematical nature of the normal operator of linearized inversion—it is a scaling operator in phase space—and on a very old idea from linear algebra, namely, Cramer's rule for computing the inverse of a matrix. The approximate solution of the linearized multiparameter problem so produced involves no ray theory computations. It may be sufficiently accurate for some purposes; for others, it can serve as a preconditioner to enhance the convergence of standard iterative methods.
Funder
National Science Foundation
Subject
Geophysics,Water Science and Technology
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献