Fast Random Permutation Tests Enable Objective Evaluation of Methods for Single-Subject fMRI Analysis

Author:

Eklund Anders12,Andersson Mats12,Knutsson Hans12

Affiliation:

1. Division of Medical Informatics, Department of Biomedical Engineering, Linköping University, Linköping, Sweden

2. Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden

Abstract

Parametric statistical methods, such asZ-,t-, andF-values, are traditionally employed in functional magnetic resonance imaging (fMRI) for identifying areas in the brain that are active with a certain degree of statistical significance. These parametric methods, however, have two major drawbacks. First, it is assumed that the observed data are Gaussian distributed and independent; assumptions that generally are not valid for fMRI data. Second, the statistical test distribution can be derived theoretically only for very simple linear detection statistics. With nonparametric statistical methods, the two limitations described above can be overcome. The major drawback of non-parametric methods is the computational burden with processing times ranging from hours to days, which so far have made them impractical for routine use in single-subject fMRI analysis. In this work, it is shown how the computational power of cost-efficient graphics processing units (GPUs) can be used to speed up random permutation tests. A test with 10000 permutations takes less than a minute, making statistical analysis of advanced detection methods in fMRI practically feasible. To exemplify the permutation-based approach, brain activity maps generated by the general linear model (GLM) and canonical correlation analysis (CCA) are compared at the same significance level.

Funder

Swedish Research Council

Publisher

Hindawi Limited

Subject

Radiology, Nuclear Medicine and imaging

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3