Cytoskeletal Interactions at the Nuclear Envelope Mediated by Nesprins

Author:

Taranum Surayya1234,Sur Ilknur1,Müller Rolf1,Lu Wenshu12345,Rashmi R. N.123,Munck Martina1,Neumann Sascha1,Karakesisoglou Iakowos5,Noegel Angelika A.123

Affiliation:

1. Institute of Biochemistry I, Medical Faculty, University of Cologne, Joseph-Stelzmann-Strasse 52, 50931 Cologne, Germany

2. Center for Molecular Medicine Cologne, Medical Faculty, University of Cologne, Joseph-Stelzmann-Strasse 52, 50931 Cologne, Germany

3. Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Strasse 52, 50931 Cologne, Germany

4. International Graduate School in Genetics and Functional Genomics, University of Cologne, 50931 Cologne, Germany

5. Department of Biological Sciences, School of Biological and Biomedical Sciences, University of Durham, Durham DH1 3LE, UK

Abstract

Nesprin-1 is a giant tail-anchored nuclear envelope protein composed of an N-terminal F-actin binding domain, a long linker region formed by multiple spectrin repeats and a C-terminal transmembrane domain. Based on this structure, it connects the nucleus to the actin cytoskeleton. Earlier reports had shown that Nesprin-1 binds to nuclear envelope proteins emerin and lamin through C-terminal spectrin repeats. These repeats can also self-associate. We focus on the N-terminal Nesprin-1 sequences and show that they interact with Nesprin-3, a further member of the Nesprin family, which connects the nucleus to the intermediate filament network. We show that upon ectopic expression of Nesprin-3 in COS7 cells, which are nearly devoid of Nesprin-3 in vitro, vimentin filaments are recruited to the nucleus and provide evidence for an F-actin interaction of Nesprin-3 in vitro. We propose that Nesprins through interactions amongst themselves and amongst the various Nesprins form a network around the nucleus and connect the nucleus to several cytoskeletal networks of the cell.

Funder

Central Maine Medical Center

Publisher

Hindawi Limited

Subject

Cell Biology

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3