Structural, Morphological, Optical, and Room Temperature Magnetic Characterization on Pure and Sm-Doped ZnO Nanoparticles

Author:

Badreddine Khalil1ORCID,Kazah I.1ORCID,Rekaby M.2ORCID,Awad R.1

Affiliation:

1. Physics Department, Faculty of Science, Beirut Arab University, Beirut, Lebanon

2. Physics Department, Faculty of Science, Alexandria University, Alexandria, Egypt

Abstract

Nano crystalline Zn1-xSmxO, (0.00 ≤ x ≤ 0.10), were prepared by wet chemical coprecipitation method. The effect of samarium doping on the structural, morphological, optical, and magnetic properties of ZnO nanoparticles was examined by X-ray powder diffraction (XRD), Transmission electron microscopy (TEM), Fourier-transform infrared spectroscopy (FTIR), Ultraviolet-visible spectroscopy (UV) and M-H magnetic hysteresis. XRD analysis showed the hexagonal wurtzite structure of ZnO. The absence of Sm2O3 as separate phase may be attributed to the complete dissolving of samarium in ZnO lattice. The lattice parameters (a and c) of Zn1-xSmxO were calculated and they fluctuated with the increase of Sm doping which indicated that the structure of ZnO was perturbed by the doping of Sm. The crystallite size was computed for all the samples using Debye-Scherrer’s method. The crystallite size decreased with the increase of Sm doping. TEM micrographs revealed that the size and the shape of the ZnO nanocomposites were changed by modifying the doping level of samarium. FTIR analysis spectrum confirmed the formation of ZnO phase and revealed a peak shift between pure and Sm-doped ZnO. The band gap energy and Urbach energy were calculated for Zn1-xSmxO, (0.00 ≤ x ≤ 0.10). The band energy gaps of pure and Sm doped ZnO samples are in the range 2.6–2.98 eV. M-H hysteresis inspection, at room temperature, showed that the pure ZnO exhibited a ferromagnetic behavior incorporated with diamagnetic and paramagnetic contributions. Ferromagnetic behavior was reduced for the doped samples with x=0.01 and x=0.04. The samples with x=0.02 and 0.06 ≤ x ≤ 0.10 tend to be superparamagnetic. The saturation magnetization (Ms), the coercivity (Hc), and the retentivity (Mr) were recorded for Zn1-xSmxO, (0.00 ≤ x ≤ 0.10).

Publisher

Hindawi Limited

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3