Optimal Mix Design and Mechanical Properties of Rapid-Hardening Foam Concrete

Author:

Liu Yuan1,Zhao Danni2,Yin Ruibo2,Li Qiang2,Wu Xiong2,Zeng Xianglong2,Qiao Wei2,Xu Jiangbo2ORCID

Affiliation:

1. Rocket Force University of Engineering, Xi’ an 710000, China

2. School of Highway, Chang’an University, Xi’ an 710064, China

Abstract

This paper conducts compressive strength tests on foam concrete prepared under four factors and three levels through the design of orthogonal experiments. It delves into the phase change rules of the load–displacement curves obtained under various mix proportions. Furthermore, based on the 1-day and 3-day compressive strength values, the study explores different mix proportion results using range analysis and variance analysis methods, thereby determining the optimal mix proportion that can satisfy the maximum 1-day and 3-day compressive strength values. The results indicate that the compression process of rapid-hardening foam concrete includes four stages: initial compaction stage, elastic stage, yielding stage, and plateau stage, with each stage having different causes. Additionally, the sensitivity sequence of factors affecting the 1-day and 3-day compressive strength of rapid-hardening foam concrete is respectively rapid sulfoaluminate cement (α) > water-reducing agent content (δ) > foam content (β) > water-cement ratio (γ) and rapid sulfoaluminate cement (α) > water-cement ratio (γ) > foam content (β) > water-reducing agent content (δ). With 100% sulfoaluminate cement content, the 1-day and 3-day compressive strength values can reach 1.7054 and 2.5471 MPa, respectively, which are 13 times and 7 times the minimum values of 1-day and 3-day compressive strength under other admixtures. The analysis shows that the content of rapid sulfoaluminate cement has the most significant effect on the 1-day and 3-day compressive strength of rapid-hardening foam concrete, with foam content having the least impact on 1-day compressive strength and water-reducing agent content having the least impact on 3-day compressive strength. By integrating range analysis and variance analysis, the optimal mix proportion that simultaneously satisfies the maximum 1-day and 3-day compressive strength is determined to be 100% content of rapid-hardening sulfoaluminate cement, 4% foam content, 0.55% cement ratio, and 0.12% admixture content. Overall, this study provides theoretical support for the research and development of new rapid-hardening foam concrete materials and has significant practical implications for the emergency repair and construction of infrastructure projects.

Funder

Key Research and Development Projects of Shaanxi Province

Publisher

Hindawi Limited

Reference21 articles.

1. Simultaneous planning for disaster road clearance and distribution of relief goods: a basic model and an exact solution method

2. The simulation study on static mixer for foamed concrete preparation;W. K. Zheng;Materials Reports,2023

3. Properties of foamed concrete with Ca(OH)2 as foam stabilizer

4. Early stability behavior and mechanism of alkali-activated foamed concrete;J. T. Dang;Journal of Building Materials,2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3