Electronic Structure and Optical Properties of N/Si-Codoped Anatase TiO2Evaluated Using First Principles Calculations

Author:

Lin Huey-Jiuan1ORCID,Wu Hsuan-Chung23

Affiliation:

1. Department of Materials Science and Engineering, National United University, Miaoli 36003, Taiwan

2. Department of Materials Engineering, Ming Chi University of Technology, New Taipei 24301, Taiwan

3. Center for Thin Film Technologies and Applications, Ming Chi University of Technology, New Taipei 24301, Taiwan

Abstract

First principles calculations were used to evaluate the electronic structure and optical properties of N/Si-monodoped and N/Si-codoped TiO2to further understand their photocatalytic mechanisms. In accordance with the atomic distance between N and Si dopants, this study considered three N/Si codoping configurations, in which the N dopant had a tendency to bond with the Si dopant. The calculations showed that the bandgaps of the N/Si codoping models were narrow, in the range 3.01–3.05 eV, redshifting the intrinsic absorption edge. The Si 3porbital of N/Si-codoped TiO2plays a key role in widening the valence band (VB), thereby increasing carrier mobility. In addition, the N-induced impurity energy level in the forbidden band appears in all three N/Si codoping models, strengthening absorption in the visible region. The bandgap narrowing, VB widening, and impurity energy levels in the forbidden band are beneficial for improving the photocatalytic activity of N/Si-codoped TiO2.

Funder

National Science Council

Publisher

Hindawi Limited

Subject

General Materials Science,Renewable Energy, Sustainability and the Environment,Atomic and Molecular Physics, and Optics,General Chemistry

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3