A Sphingosine Kinase Form 2 Knockout Sensitizes Mouse Myocardium to Ischemia/Reoxygenation Injury and Diminishes Responsiveness to Ischemic Preconditioning

Author:

Vessey Donald A.12,Li Luyi1,Jin Zhu-Qiu3,Kelley Michael1,Honbo Norman4,Zhang Jianqing2,Karliner Joel S.245

Affiliation:

1. Liver Study Unit, Veterans Affairs Medical Center, San Francisco, CA 94121, USA

2. Department of Medicine, University of California, San Francisco, CA 94143, USA

3. Department of Pharmaceutical Science, South Dakota State University, Brookings, SD 57007, USA

4. Cardiology Section, Veterans Affairs Medical Center, San Francisco, CA 94121, USA

5. Cardiovascular Research Institute, University of California, San Francisco, CA 94143, USA

Abstract

Sphingosine kinase (SphK) exhibits two isoforms, SphK1 and SphK2. Both forms catalyze the synthesis of sphingosine 1-phosphate (S1P), a sphingolipid involved in ischemic preconditioning (IPC). Since the ratio of SphK1 : SphK2 changes dramatically with aging, it is important to assess the role of SphK2 in IR injury and IPC. Langendorff mouse hearts were subjected to IR (30 min equilibration, 50 min global ischemia, and 40 min reperfusion). IPC consisted of 2 min of ischemia and 2 min of reperfusion for two cycles. At baseline, there were no differences in left ventricular developed pressure (LVDP), ± dP/dtmax, and heart rate between SphK2 null (KO) and wild-type (WT) hearts. In KO hearts, SphK2 activity was undetectable, and SphK1 activity was unchanged compared to WT. Total SphK activity was reduced by 53%. SphK2 KO hearts subjected to IR exhibited significantly more cardiac damage (% infarct size) compared with WT (% infarct size); postischemic recovery of LVDP was lower in KO hearts. IPC exerted cardioprotection in WT hearts. The protective effect of IPC against IR was diminished in KO hearts which had much higher infarction sizes (%) compared to the IPC/IR group in control hearts (%). Western analysis revealed that KO hearts had substantial levels of phosphorylated p38 which could predispose the heart to IR injury. Thus, deletion of the SphK2 gene sensitizes the myocardium to IR injury and diminishes the protective effect of IPC.

Publisher

Hindawi Limited

Subject

Cell Biology,Aging,General Medicine,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3