Reinforcement Learning-Based Service-Oriented Dynamic Multipath Routing in SDN

Author:

Chiu Kai-Cheng1ORCID,Liu Chien-Chang1ORCID,Chou Li-Der1ORCID

Affiliation:

1. Department of Computer Science and Information Engineering, National Central University, Taoyuan 32001, Taiwan

Abstract

The increasing quality and various requirements of network services are guaranteed because of the advancement of the emerging network paradigm, software-defined networking (SDN), and benefits from the centralized and software-defined architecture. The SDN not only facilitates the configuration of the network policies for traffic engineering but also brings convenience for network state obtainment. The traffic of numerous services is transmitted within a network, whereas each service may demand different network metrics, such as low latency or low packet loss rate. Corresponding quality of service policies must be enforced to meet the requirements of different services, and the balance of link utilization is also indispensable. In this research, Reinforcement Discrete Learning-Based Service-Oriented Multipath Routing (RED-STAR) has been proposed to understand the policy of distributing an optimal path for each service. The RED-STAR takes the network state and service type as input values to dynamically select the path a service must be forwarded. Custom protocols are designed for network state obtainment, and a deep learning-based traffic classification model is also integrated to identify network services. With the differentiated reward scheme for every service type, the reinforcement learning model in RED-STAR gradually achieves high reward values in various scenarios. The experimental results show that RED-STAR can adopt the dynamic network environment, obtaining the highest average reward value of 1.8579 and the lowest average maximum bandwidth utilization of 0.3601 among all path distribution schemes in a real-case scenario.

Funder

Ministry of Science and Technology, Taiwan

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3