Relative Position Model Predictive Control of Double Cube Test-Masses Drag-Free Satellite with Extended Sliding Mode Observer

Author:

Wang Enyou1ORCID,Zhang Jinxiu12,Li Huayi1,Liu Ming1

Affiliation:

1. School of Astronautics, Harbin Institute of Technology, Harbin 150001, China

2. School of Aeronautics and Astronautics, Sun Yat-sen University, Guangzhou 511436, China

Abstract

The drag-free satellites, being space-borne ultrahigh precise measurement platforms, have played irreplaceable roles in a great number of space science missions such as navigation, earth science, fundamental physics, and astrophysics. Most of these missions have to be performed based on the satellites placed with double cube test-masses, which makes the satellite layout and control strategy be more complex. This paper investigates the orbit keeping control problem of a class of low Earth orbit drag-free satellites with double cube test masses. A disturbance observer-based composite control method is proposed, which consists of an extended sliding mode observer and the tube-based robust model predictive control approach. In this design, the observer is proposed to estimate the relative position and velocity of the satellite and the external space disturbance force. A tube-based robust model predictive control scheme is then developed to stabilize the satellite orbit control systems in the presence of actuator saturation, state constraints, and additive stochastic noises. Finally, a simulation example is presented to demonstrate the efficacy and superiority of the proposed orbit control method.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Reference57 articles.

1. The Drag-Free Satellite

2. Testing the equivalence principle in space: the MICROSCOPE mission;E. Hardy

3. Gravity field models derived from the second degree radial derivatives of the GOCE mission: a case study;A. N. Marchenko;Annals of Geophysics,2017

4. Laser interferometer space antenna;P. Amaro-Seoane,2017

5. Drag-free control and drag force recovery of small satellites;J. Conklin

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3