Numerical Simulation of Empty-Hole Effect during Parallel-Hole Cutting under Different In Situ Stress Conditions

Author:

Wu Zhengyu1ORCID,Luo Dayou2ORCID,Chen Feng1,Huang Wulin3

Affiliation:

1. School of Engineering, Fujian Jiangxia University, 2 Xiyuangong Road, Fuzhou 350108, China

2. Engineering, Francis College of Engineering, University of Massachusetts Lowell, Lowell, MA 01854, USA

3. School of Resource and Safety Engineering, Central South University, 932 South Lushan Road, Changsha 410083, China

Abstract

With the progress of deep mining in mine exploitation, the effect of the in situ stress field plays a more and more significant and crucial role in rock blasting. To uncover the impact of in situ stress field on empty-hole effect during parallel-hole cutting, the distribution and the trend of changes in dynamic stress around empty hole during blasting under different in situ stress conditions are simulated based on the basic model for parallel-hole cutting using 3D finite element analysis software ANSYS/LS-DYNA and implicit-explicit analysis method. Subsequently, the law of variation in the empty-hole effect under different in situ stress conditions is determined, and the effects of horizontal and vertical stress fields are analyzed in detail. The simulation results show that the overall increase in in situ stress can facilitate compressive failure and inhibit tensile failure in the rock mass around an empty hole during blasting. When empty holes are arranged horizontally, the effect of the vertical stress field is consistent with that of the in situ stress field, while the effect of the horizontal stress field is opposite to that of the in situ stress field. With the increased stress, the inhibitive effect of the vertical stress field on tensile stress around an empty hole is remarkably stronger than that of the horizontal stress field. Finally, the numerically simulated results are verified by the theoretical calculation. This study can provide new insight and a simple but accurate numerical simulation method to investigate how the in situ stress field affects the empty-hole effect, especially in deep mining.

Funder

Foundation of Education Department of Fujian Province

Publisher

Hindawi Limited

Subject

Civil and Structural Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3