H2S Pretreatment Is Promigratory and Decreases Ischemia/Reperfusion Injury in Human Microvascular Endothelial Cells

Author:

Zicola Elisa1ORCID,Arrigo Elisa1ORCID,Mancardi Daniele1ORCID

Affiliation:

1. Department of Clinical and Biological Sciences, University of Turin, Italy

Abstract

Endothelial cell injury and vascular function strongly correlate with cardiac function following ischemia/reperfusion injury. Several studies indicate that endothelial cells are more sensitive to ischemia/reperfusion compared to cardiomyocytes and are critical mediators of cardiac ischemia/reperfusion injury. H2S is involved in the regulation of cardiovascular system homeostasis and can act as a cytoprotectant during ischemia/reperfusion. Activation of ERK1/2 in endothelial cells after H2S stimulation exerts an enhancement of angiogenesis while its inhibition significantly decreases H2S cardioprotective effects. In this work, we investigated how H2S pretreatment for 24 hours prevents the ischemia/reperfusion injury and promotes angiogenesis on microvascular endothelial cells following an ischemia/reperfusion protocol in vitro, using a hypoxic chamber and ischemic buffer to simulate the ischemic event. H2S preconditioning positively affected cell viability and significantly increased endothelial cell migration when treated with 1 μM H2S. Furthermore, mitochondrial function was preserved when cells were preconditioned. Since ERK1/2 phosphorylation was extremely enhanced in ischemia/reperfusion condition, we inhibited ERK both directly and indirectly to verify how H2S triggers this pathway in endothelial cells. Taken together, our data suggest that H2S treatment 24 hours before the ischemic insult protects endothelial cells from ischemia/reperfusion injury and eventually decreases myocardial injury.

Funder

Fondo Ricerca Locale

Publisher

Hindawi Limited

Subject

Cell Biology,Aging,General Medicine,Biochemistry

Reference76 articles.

1. Heart Disease and Stroke Statistics—2020 Update: A Report From the American Heart Association

2. Myocardial Reperfusion Injury

3. Cellular and molecular mechanisms of endothelial ischemia/reperfusion injury: perspectives and implications for postischemic myocardial protection;Q. Yang;American Journal of Translational Research,2016

4. MicroRNA Expression Profile Changes after Cardiopulmonary Bypass and Ischemia/Reperfusion-Injury in a Porcine Model of Cardioplegic Arrest

5. Endothelial function in different organs

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3