Improvement of the Communication between RFID Sensor Network Devices Used to Control and Monitor a Building

Author:

Bou-El-Harmel Abdelhamid1ORCID,Benbassou Ali1,Belkadid Jamal1

Affiliation:

1. Laboratory of Innovative Technologies Eq. CEM/Telecoms Sidi Mohamed Ben Abdullah University, High School of Technology, Road IMOUZZER, BP 2427 Fez, Morocco

Abstract

In the RFID sensor network (RSN), the devices communicate with each other by RF waves using the antennas through a propagation channel. A poor communication between these devices results in either a significant economic loss or security threats. The communication problems can have several origins depending on the type of antenna used and the nature of the propagation channel. In this work, our objective is to limit the communication problems between the nodes of this network that are linked to the characteristics of an indoor propagation channel. The goal is to predict the channel characteristics using the 3D ray tracing method in order to select the appropriate transmission parameters such as transmission power and duration of a symbol. To achieve this, we have modeled a building that is sectioned as a propagation channel where network devices are deployed for control and monitoring. The communication was made at 915 MHz using the quasi-isotropic 3D cubic antenna that we designed as well as a conventional dipole antenna in order to compare the results. We have found that the use of the 3D cubic antenna gives several advantages to the RFID sensor network compared to the most commonly used conventional dipole antenna, such as a transmission power of 0 dBm which automatically leads to an increase in the lifetime of the devices, as well as a minimum symbol duration of around 219.78 ns which gives a high bit rate.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Instrumentation,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Design of an Electrically Small and Quasi-Isotropic 3D Antenna for Internet of Things (IoT) Applications;2024 International Conference on Circuit, Systems and Communication (ICCSC);2024-06-28

2. ESPAR array design for the UHF RFID wireless sensor communication system;International Journal of Communication Systems;2023-03-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3