Silence of Long Noncoding RNA SNHG14 Alleviates Ischemia/Reperfusion-Induced Acute Kidney Injury by Regulating miR-124-3p/MMP2 Axis

Author:

Xue Qianlong1,Yang Lipeng1,Wang Hui1,Han Shuchi1ORCID

Affiliation:

1. Department of Emergency, The First Affiliated Hospital of Hebei North University, No. 12, Changqing Road, Zhangjiakou City, Hebei Province 075000, China

Abstract

Purpose. Ample evidence has proved that lncRNAs are pivotal regulators in acute kidney injury (AKI). Here, we focus on the role and mechanism of lncRNA SNHG14 in ischemia/reperfusion- (I/R-) caused AKI. Methods. I/R and hypoxia/reoxygenation (H/R) were applied to induce rats and HK-2 cells to establish AKI models in vivo and in vitro. Relative expression of SNHG14, miR-124-3p, and MMP2 was determined by qRT-PCR. HE staining was used to evaluate pathological changes in renal tissues, and acute tubular necrosis (ATN) score was calculated. Renal function was evaluated by measuring serum creatinine content and blood urea nitrogen content. Levels of IL-1β, IL-6, and TNF-α were measured by ELISA. Cell viability was examined by MTT assay. Oxidative stress was assessed by measuring SOD, MDA, and ROS levels. The target of SNHG14 or miR-124-3p was verified by DLR assay. Protein expression of MMP2 was examined by western blot. Results. SNHG14 was boosted in renal tissues of I/R-stimulated rats and H/R-induced HK-2 cells, while miR-124-3p was diminished in H/R-stimulated HK-2 cells. Si-SNHG14 or miR-124-3p mimics repressed inflammation and oxidative stress and enhanced cell viability in H/R-stimulated HK-2 cells. Sh-SNHG14 mitigated I/R-induced AKI in rats. MiR-124-3p was targeted by SNHG14, and MMP2 was targeted by miR-124-3p. Inhibition of miR-124-3p or upregulation of MMP2 reversed inhibitory effects of SNHG14 silence on inflammation and oxidative stress as well as the promoting effect of SNHG14 silence on cell viability in H/R-induced HK-2 cells. Conclusion. Knockdown of SNHG14 alleviated I/R-induced AKI by miR-124-3p-mediated downregulation of MMP2.

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3