Analysis for Overburden Destruction on Lateral Boundary of Stope Based on Viscoelastic-Plastic Finite Element Method

Author:

Yin Zengde12ORCID,Liu Jinxiao324ORCID,Liu Yongle3ORCID,Li Wenxin23ORCID

Affiliation:

1. College of Safety and Environment Engineering, Shandong University of Science and Technology, 579 Qianwangang Rd, Huangdao District, Qingdao 266590, China

2. Mine Disaster Prevention and Control-Ministry of State Key Laboratory Breeding Base, Shandong University of Science and Technology, 579 Qianwangang Rd, Huangdao District, Qingdao 266590, China

3. College of Energy and Mining Engineering, Shandong University of Science and Technology, 579 Qianwangang Rd, Huangdao District, Qingdao 266590, China

4. Key Laboratory of Deep Coal Mine Excavation Response & Disaster Prevention and Control, Anhui University of Science and Technology, Huainan 232001, China

Abstract

In longwall mining, the deformation and destruction of overlying strata always lag behind coal extraction. The overlying strata characteristics at the lateral boundary of the stope can be classified into four categories, i.e., Hard-Soft, Soft-Hard, Hard-Hard, and Soft-Soft. In order to analyze the effect of the above four structures, we adopt viscoelastic theory to the finite element method (FEM) and define the point safety factor to evaluate the rock damage. The accuracy of programming is verified through example verification. A modified viscoelastic-plastic FEM model is applied to analyze the performance of four overburden structures. The numerical computation results show the following: From the rupture of overburden rock to its stabilization, the duration time of four typical structures can be sorted as “Soft-Soft < Hard-Soft < Soft-Hard < Hard-Hard”. The fracture direction and dip angle of each structure vary as well. The fracture zone of the H-S structure is inclined toward the goaf, while that of the S-H structure is inclined to the lateral boundary of the stope. The fracture zone of the H-H structure is also inclined toward the lateral boundary, with a greater angle than the S-H structure, while the fracture zone of the S-S structure is inclined to goaf, with a greater angle than the H-S structure.

Funder

Key Laboratory of Deep Coal Mine Excavation Response

Publisher

Hindawi Limited

Subject

Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3