Dynamic Compressive Characteristics of Sandstone under Confining Pressure and Radial Gradient Stress with the SHPB Test

Author:

Wang Shiming12ORCID,Liu Yunsi12ORCID,Zhou Jian3ORCID,Wu Qiuhong4,Ma Shuyi3ORCID,Zhou Zhihua5

Affiliation:

1. School of Civil Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China

2. Hunan Provincial Key Laboratory of Geotechnical Engineering for Stability Control and Health Monitoring, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China

3. School of Resources and Safety Engineering, Central South University, Changsha, Hunan 410083, China

4. Work Safety Key Lab on Prevention and Control of Gas and Roof Disasters for Southern Coal Mines, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China

5. School of Mechanical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China

Abstract

Research on the dynamic compressive characteristics of sandstone under radial gradient stress and confining pressure is conducive to understanding the characteristics of the surrounding rock, especially in an excavation operation for an underground mine roadway and tunnel. The present work aimed at studying the effects of radial gradient stress and confining pressure on the impact of compression of sandstone using a large-diameter split Hopkinson pressure bar. The results showed that the dynamic strength of sandstone under radial gradient stress increased with strain rate following a power function, and the dynamic strength of the sandstone under radial gradient stress was lower and more sensitive to strain rate. The increase in strain at peak stress (peak strain) was linearly correlated with the strain rate under different confining pressures. The sensitivity of the peak strain to confining pressure was lower for the sandstone with a hole, while the values of the elastic modulus were decreased. However, further increasing the stain rate would lead to an increase in the elastic modulus. Also, the ductility of the sandstone with a hole tested in this study was found to improve more significantly. Finally, with an increase in the incident energy, the absorbed energy per unit volume would increase, but would not be affected obviously by the radial gradient stress.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Civil and Structural Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3