Subway Tunnel Disease Associations Mining Based on Fault Tree Analysis Algorithm

Author:

Ding Xiaobing1ORCID,Huang Qiuyu1,Zhu Haiyan1,Hu Hua1,Liu Zhigang1

Affiliation:

1. School of Urban Rail Transportation, Shanghai University of Engineering Science, Shanghai 201620, China

Abstract

Monitoring and control of subway tunnel diseases throughout operation determine whether the operation of the subway is safe or not. In order to ensure operation safety, in-depth analysis of tunnel disease risks must be conducted. We constructed a fault tree based on tunnel diseases of Shanghai Subway at first. Using the subway tunnel maintenance work data, we calculated the probability of occurrence of elementary events of the fault tree, conducted quantitative calculation and analysis on the tunnel diseases, and found major diseases of the tunnels and their causes in light of the calculation results. Then, indicated by the precise fault tree analysis (FTA) we conducted, common tunnel diseases mainly include large passenger flow, shortage of maintenance personnel, maintenance error, personal carelessness, hot weather, and poor lighting. Analysis was conducted on the probability importance of elementary events of the tunnel diseases as well. In the end, we proposed the tunnel disease association rule mining algorithm based on the support degree. Via the calculation of association among major diseases, we explored the elaborate association mechanism of the diseases. The in-depth mining on the association mechanism can provide theoretical support and decision support for prevention and comprehensive control of the tunnel diseases and lay a solid foundation of practice guidance for subway operation safety of megacities.

Funder

National Key Research and Development Plan of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Reference10 articles.

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3