Blockade of EP4 by ASP7657 Modulates Myeloid Cell Differentiation In Vivo and Enhances the Antitumor Effect of Radiotherapy

Author:

Nishibata Toshihide1ORCID,Amino Nobuaki1,Tanaka-Kado Ruriko1,Tsujimoto Susumu1,Kawashima Tomoko1ORCID,Konagai Satoshi1,Suzuki Tomoyuki1,Takeuchi Masahiro1

Affiliation:

1. Immuno-oncology, Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba, Ibaraki 305-8585, Japan

Abstract

The tumor microenvironment (TME) is thought to influence the antitumor efficacy of immuno-oncology agents through various products of both tumor and stromal cells. One immune-suppressive factor is prostaglandin E2 (PGE2), a lipid mediator whose biosynthesis is regulated by ubiquitously expressed cyclooxygenase- (COX-) 1 and inducible COX-2. By activating its receptors, PGE2 induces immune suppression to modulate differentiation of myeloid cells into myeloid-derived suppressor cells (MDSCs) rather than dendritic cells (DCs). Pharmacological blockade of prostaglandin E receptor 4 (EP4) causes a decrease in MDSCs, reprogramming of macrophage polarization, and increase in tumor-infiltrated T cells, leading to enhancement of antitumor immunity in preclinical models. Here, we report the effects of the highly potent EP4 antagonist ASP7657 on the DC population in tumor and antitumor immune activation in an immunocompetent mouse tumor model. Oral administration of ASP7657 inhibited tumor growth, which was accompanied by an increase in intratumor DC and CD8+ T cell populations and a decrease in the M-MDSC population in a CT26 immunocompetent mouse model. The antitumor activity of ASP7657 was dependent on CD8+ T cells and enhanced when combined with an antiprogrammed cell death-1 (PD-1) antibody. Notably, ASP7657 also significantly enhanced the antitumor efficacy of radiotherapy in an anti-PD-1 antibody refractory model. These results indicate that the therapeutic potential of ASP7657 arises via upregulation of DCs and subsequent CD8+ T cell activation in addition to suppression of MDSCs in mouse models and that combining EP4 antagonists with radiotherapy or an anti-PD-1 antibody can improve antitumor efficacy.

Funder

Astellas Pharma

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3