Intelligent Splicing Method of Virtual Reality Lingnan Cultural Heritage Panorama Based on Automatic Machine Learning

Author:

Fu Yao1,Guo Tingting2ORCID,Zhao Xingfang3

Affiliation:

1. Arts Design Department, Guangdong Teachers College of Foreign Language and Arts, Guangzhou 510640, Guangdong, China

2. Information Department, Guangdong Teachers College of Foreign Language and Arts, Guangzhou 510640, Guangdong, China

3. Testing and Technology Center for Industrial Products of Shenzhen Customs District, Shenzhen 518067, Guangdong, China

Abstract

With the increasing expansion of virtual reality application fields and the complexity of application content, the demand for real-time rendering of realistic graphics has increased sharply. This research mainly discusses the intelligent mosaic method of virtual reality Lingnan cultural heritage panorama based on automatic machine learning. In order to effectively make up for the impact of the insufficiency of the collection process on the quality of the final panoramic image of Lingnan cultural heritage, it is necessary to minimize the irregular rotation of the camera and collect images according to the overlapping area between adjacent images of appropriate size. In order to make Lingnan cultural heritage panoramic images have better visual effects, it is necessary to preprocess the images before image registration and fusion. Image preprocessing mainly includes image denoising and image projection transformation. In this study, cylindrical projection is used to construct the panorama of Lingnan cultural heritage. For each Lingnan cultural heritage training image, we first perform image segmentation to obtain multiple regions and extract the visual features of each region. We use automatic machine learning models to train the visual feature set and use the bagging method to generate different training subsets. In order to generate each component classifier, we determine the overlap area of the two images according to the matched SIFT feature points and determine the best stitching line during the implementation of stitching. In this paper, the number of pixels in the first row of the overlapping area is used to determine the candidate stitching line column, and the best stitching line position should be determined in consideration of the smallest color difference in the stitching area and the most similar texture on both sides. This article uses a Java Applet-based approach to realize virtual roaming of viewing panoramic images of Lingnan cultural heritage in IE browser. The highest accuracy of SIFT is 82.22%, and the lowest recognition time is 0.01 s. This research will promote the development of Lingnan cultural heritage.

Publisher

Hindawi Limited

Subject

Computer Networks and Communications,Computer Science Applications

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3