Affiliation:
1. National Lab of Radar Signal Processing, Xidian University, Xi’an 710071, China
Abstract
Airborne phased array radar (PAR) suffers from multipath problems when flying over a calm sea surface. The existence of a multipath phenomenon will cause the electromagnetic echo of the same target to be reflected back to the airborne PAR from two paths, namely, direct path (DP) and multipath. Compared with the ground-based radar, the target echo received by airborne PAR in the multipath environment has two important characteristics: one is that the DP signal and the multipath signal exist in different range bins, and the other is that the radar cross section (RCS) in the DP direction may be smaller than that in the multipath direction. Considering these two characteristics, this paper first proposes a target pairing algorithm for matching the DP range and multipath range of the same target in signal detection, and then, combined with the cell-averaging constant false alarm rate (CA-CFAR) detection model, an incoherent integration detection method for airborne PAR in the multipath environment is proposed. In the target pairing process, the geometric structure relationship of the airborne PAR model can be fully utilized. After a successful target pairing process, the energy of the multipath signal will be incoherently accumulated into the corresponding DP range bin, so as to improve the probability of DP range bin data passing the detection threshold. In essence, the proposed method makes full use of multipath energy to improve the detection capability of airborne PAR in the multipath environment. Finally, the detection probability of the proposed method is given, and the detection performance is analyzed.
Funder
Fund for Foreign Scholars in University Research and Teaching Programs
Subject
Electrical and Electronic Engineering