Can Carbon Sequestration in Tasmanian “Wet” Eucalypt Forests Be Used to Mitigate Climate Change? Forest Succession, the Buffering Effects of Soils, and Landscape Processes Must Be Taken into Account

Author:

McIntosh Peter D.1ORCID,Hardcastle James L.2,Klöffel Tobias3,Moroni Martin4,Santini Talitha C.5

Affiliation:

1. Forest Practices Authority, 30 Patrick Street, Hobart, TAS 7000, Australia

2. School of Earth and Environmental Sciences, University of Queensland, Brisbane, QLD 4072, Australia

3. Research Department of Ecology and Ecosystem Management, Technical University of Munich, Freising, Germany

4. Private Forests Tasmania, 30 Patrick Street, Hobart, TAS 7000, Australia

5. UWA School of Agriculture and Environment, University of Western Australia, Crawley, WA 6009, Australia

Abstract

Small areas of the wetter parts of southeast Australia including Tasmania support high-biomass “wet” eucalypt forests, including “mixed” forests consisting of mature eucalypts up to 100 m high with a rainforest understorey. In Tasmania, mixed forests transition to lower biomass rainforests over time. In the scientific and public debate on ways to mitigate climate change, these forests have received attention for their ability to store large amounts of carbon (C), but the contribution of soil C stocks to the total C in these two ecosystems has not been systematically researched, and consequently, the potential of wet eucalypt forests to serve as long-term C sinks is uncertain. This study compared soil C stocks to 1 m depth at paired sites under rainforest and mixed forests and found that there was no detectable difference of mean total soil C between the two forest types, and on average, both contained about 200 Mg·ha−1 of C. Some C in subsoil under rainforests is 3000 years old and retains a chemical signature of pyrogenic C, detectable in NMR spectra, indicating that soil C stocks are buffered against the effects of forest succession. The mean loss of C in biomass as mixed forests transition to rainforests is estimated to be about 260 Mg·ha−1 over a c. 400-year period, so the mature mixed forest ecosystem emits about 0.65 Mg·ha−1·yr−1 of C during its transition to rainforest. For this reason and because of the risk of forest fires, setting aside large areas of wet eucalypt forests as reserves in order to increase landscape C storage is not a sound strategy for long-term climate change mitigation. Maintaining a mosaic of managed native forests, including regenerating eucalypts, mixed forests, rainforests, and reserves, is likely to be the best strategy for maintaining landscape C stocks.

Funder

The Board of the Forest Practices Authority

Publisher

Hindawi Limited

Subject

Nature and Landscape Conservation,Plant Science,Ecology, Evolution, Behavior and Systematics,Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3