Affiliation:
1. Department of Computer Engineering, Faculty of Electrical and Computer Engineering, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
Abstract
This paper presents a highly negative dispersion-compensating photonic crystal fiber (DC-PCF) with multiple zero dispersion wavelengths (ZDWs) within the telecommunication bands. The multiple ZDWs of the PCF may lead to high spectral densities than those of other PCFs with few ZDWs. The full-vectorial finite element method with a perfectly matched layer (PML) is used to investigate the optical properties of the PCFs. The numerical analysis shows that the proposed PCF, i.e., PCF (b), exhibits multiple ZDWS and also achieves a high negative chromatic dispersion of −15089.0 ps/nm·km at 1.55
wavelength, with the multiple ZDWs occurring within the range from 0.8 to 2.0
range. Other optical properties such as the confinement loss of 0.059 dB/km, the birefringence of
, the nonlinearity of 18.92
, and a normalized frequency of 2.633 was also achieved at 1.55
wavelength. These characteristics make the PCF suitable for high-speed, long-distance optical communication systems, optical sensing, soliton pulse transmission, and polarization-maintaining applications.
Subject
Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献