Optimization of Integrated Solid Refuse Fuel and Solid Oxide Electrolyzer Cell System for Hydrogen Production

Author:

Oh Mireu Sunhee12,Park Seong-Ryong2,Kang Yong Tae1ORCID

Affiliation:

1. School of Mechanical Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea

2. Energy Efficiency Research Division, Korea Institute of Energy Research (KIER), 152 Gajeong-ro, Yuseong-gu, Daejeon 34129, Republic of Korea

Abstract

In this study, a performance predictive model for hydrogen production was developed for the commercialization of the integrated solid refuse fuel (SRF) and solid oxide electrolyzer cell (SOEC) system. A SRF system was developed, and reliability was verified in the steam conditions for the SOEC application. Systems optimization according to parametric analysis was conducted in the predictive model based on the experiments. When the steam temperature varies between 973 and 1,373 K, hydrogen production increases by 14% to 64 tons per year at 1,373 K; meanwhile, when the steam pressure varies between 0.1 and 0.7 MPa, the performance deteriorates significantly. Under optimal conditions (temperature: 1,373 K; pressure: 0.3 MPa; mass flow rate 200 kg/h), the amount of steam that can be produced by the integrated SRF–SOEC system is 1,752 tons per year, which can yield 87.6 tons of hydrogen per year. When SRF was used as a heat source, compared with the use of LNG, a total annual cost saving of approximately 2.6% was realized. The break-even point can be reduced by approximately 5 months, which reflects economic efficiency.

Funder

Ministry of Science, ICT and Future Planning

Publisher

Hindawi Limited

Subject

Energy Engineering and Power Technology,Fuel Technology,Nuclear Energy and Engineering,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3