Finite Element Simulations of Dynamic Shear Fracture of Hollow Shear Pins

Author:

Jin Zibo1ORCID,Zhou Jin12ORCID,Li Daochun1ORCID

Affiliation:

1. School of Aeronautic Science and Engineering, Beihang University, Beijing 100000, China

2. Chinese Aeronautical Establishment, Beijing 100012, China

Abstract

The shear pin structure is widely used in aeronautics and astronautics structures to deal with emergency structure separation problems. The shear pin design has a strict restriction on the precise failure load and definite failure mode. Previous research has conducted shear fracture tests and simulations of solid shear pins while there is a lack of detailed research on the shear fracture of hollow shear pins with large diameters. In this research, a 3-dimensional finite element model was built based on the actual shear pin installed on the aircraft engine pylon and the model was validated by the experiment. The influences of the inner diameter of hollow shear pins on the shear fracture process were investigated by conducting finite element simulations. The structural deformation, energy dissipation in the fracture process, and failure load of shear pins were evaluated. It is found that as the inner diameter increases, the failure mode of shear pins changed and would result in difficulties on the structure separation. To solve this problem, a new configuration of hollow shear pin was proposed for the purpose of obtaining both desired failure load and failure mode. The new configuration was verified by the fracture simulation and it is found that the new configuration is effective and can be used to improve the shear fracture performance.

Publisher

Hindawi Limited

Subject

Aerospace Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Shear performance and failure mechanism of brass pins considering the temperature effect;Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science;2023-11-13

2. The experiment and simulation of enhanced mechanical performance for polyethylene terephthalate/high‐density polyethylene composites via domain size control;Polymers for Advanced Technologies;2023-07-18

3. Shear resistance and arming characteristics of fuze shear sheets using theoretical analysis and numerical simulation;Third International Conference on Mechanical Design and Simulation (MDS 2023);2023-06-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3