OpenCL Performance Evaluation on Modern Multicore CPUs

Author:

Lee Joo Hwan1,Nigania Nimit1,Kim Hyesoon1,Patel Kaushik1,Kim Hyojong1

Affiliation:

1. School of Computer Science, College of Computing, Georgia Institute of Technology, Atlanta, GA 30332, USA

Abstract

Utilizing heterogeneous platforms for computation has become a general trend, making the portability issue important. OpenCL (Open Computing Language) serves this purpose by enabling portable execution on heterogeneous architectures. However, unpredictable performance variation on different platforms has become a burden for programmers who write OpenCL applications. This is especially true for conventional multicore CPUs, since the performance of general OpenCL applications on CPUs lags behind the performance of their counterparts written in the conventional parallel programming model for CPUs. In this paper, we evaluate the performance of OpenCL applications on out-of-order multicore CPUs from the architectural perspective. We evaluate OpenCL applications on various aspects, including API overhead, scheduling overhead, instruction-level parallelism, address space, data location, data locality, and vectorization, comparing OpenCL to conventional parallel programming models for CPUs. Our evaluation indicates unique performance characteristics of OpenCL applications and also provides insight into the optimization metrics for better performance on CPUs.

Funder

National Science Foundation

Publisher

Hindawi Limited

Subject

Computer Science Applications,Software

Reference1 articles.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Synthesis of Parallel Software from Heterogeneous Dataflow Models;SN Computer Science;2022-04-26

2. Accurate Energy and Performance Prediction for Frequency-Scaled GPU Kernels;Computation;2020-04-27

3. Predictable GPUs Frequency Scaling for Energy and Performance;Proceedings of the 48th International Conference on Parallel Processing;2019-08-05

4. Heterogeneous acceleration of volumetric JPEG 2000 using OpenCL;The International Journal of High Performance Computing Applications;2016-05-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3