Affiliation:
1. Tiandi Huatai Ming Management Co. Ltd., Beijing 10083, China
2. State Key Laboratory for Geomechanics and Deep Underground Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China
Abstract
In view of the high gas pressure and low permeability of deep coal seam, it is difficult to control gas, which affects the safety production of coal mine. The technical scheme of hydraulic fracturing to improve the permeability of coal seam is put forward, and the gas drainage technology is used to control the gas emission of coal seam. The fracturing effect under different water pressure, different gradient fracturing times, and in situ stress is analyzed by using 3DEC (3-Dimensional Distinct Element Code) discrete element software. The simulation analysis and field verification results show that the coal seam gas pressure increases linearly with the buried depth. In situ stress characteristics and hydraulic strength are the key factors affecting the effect of hydraulic fracturing. The fracturing radius increases with the increase of flow. When the construction pressure of hydraulic fracturing test is 18 MPa, the distance between fracturing hole and drainage hole is 8.5 m. The actual measurement shows that after hydraulic fracturing and gas drainage, the maximum gas emission is reduced by 51%, and the average gas emission is reduced by 58%.
Funder
Science and Technology Innovation and Entrepreneurship Fund Project of Tiandi Technology Co., Ltd
Subject
General Earth and Planetary Sciences
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献