The Dew Particle Interception Abilities of Typical Plants in Northeast China Plant Leaves Capture Particles in Dew

Author:

Xu Yingying1ORCID,Dou Yingbo1,Yi Yan1,Yang Xu1

Affiliation:

1. Key Laboratory of Songliao Aquatic Environment, Ministry of Education,Jilin Jianzhu University, No. 5088 Xincheng Road, Changchun 130118, Jilin, China

Abstract

The dew condensation frequency is high, and the dew amount is heavy in urban ecosystems. During the condensation process, particulate matter acts as a condensation core, playing an important role in purifying the air. At night, dew mainly condenses on plant leaf surfaces, the plant leaves settle the particles in the dew, and some of the particles are resuspended into the atmosphere in the process of dew evaporation after sunrise. This paper monitored the condensation and evaporation processes of dew on four common plants in Changchun city from June to September 2020. By analyzing the mass and size of particles on different leaves after dew condensation and evaporation, the ability of different plants to retain particles in dew was analyzed. The results showed that there was no significant difference in the TSP capture ability during dew condensation between Buxus sinica (Rehd. et Wils.) Cheng subsp. sinica var. parvifolia M. Cheng, Syringa oblata Lindl., Hemiptelea davidii (Hance) Planch., and Pinus tabuliformis Carrière, with a TSP content of 0.21 ± 0.06 μg/cm2. Coarse particulate matter is the main type of deposit in the dew condensation stage. Particulate deposition varied according to species, leaf shape, and microstructure. The proportion of TSP remaining on leaves after dew evaporation from Pinus tabuliformis Carrière, Hemiptelea davidii (Hance) Planch., Buxus sinica (Rehd. et Wils.) Cheng subsp. sinica var. parvifolia M. Cheng, and Syringa oblata Lindl. tree was 89.7 ± 3.9%, 80.6 ± 3.6%, 75.9 ± 4.5%, and 71.4 ± 3.7%, respectively. The ability of the leaves to trap fine particles was significantly higher than that for coarse particles ( P < 0.05 ) after dew evaporation. The highest amount of particle captured by Syringa oblata Lindl. individual was 15.17 g/y during dew condensation, and the amount of remaining particles after dew evaporation was 10.83 g/y. This paper provides a theoretical basis for the selection of tree species for urban greening.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Atmospheric Science,Pollution,Geophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3