Using Sensor Network in Motion Detection Based on Deep Full Convolutional Network Model

Author:

Xu Qichang1ORCID

Affiliation:

1. Institute of Physical Education, Hechi University, Yizhou, Guangxi 546300, China

Abstract

Aiming at the shortcomings of traditional moving target detection methods in complex scenes such as low detection accuracy and high complexity, and not considering the overall structure information of the video frame image, this paper proposes a moving-target detection based on sensor network. First, a low-power motion detection wireless sensor network node is designed to obtain motion detection information in real time. Secondly, the background of the video scene is quickly extracted by the time domain averaging method, and the video sequence and the background image are channel-merged to construct a deep full convolutional network model. Finally, the network model is used to learn the deep features of the video scene and output the pixel-level classification results to achieve moving target detection. This method not only can adapt to complex video scenes of different sizes but also has a simple background extraction method, which effectively improves the detection speed.

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3