High In-Vitro Antitumour Activity of Triphenyltin Coumarin 3-Carboxylate and its Coordination Complexes With Monodentate Oxygen Donor Ligands Against the Epstein Barr Virus (EBV)-DNA Positive Raji and the P-388 Murine Leukaemia Cell Lines, and Evidence for the Suppression by Organotin of the Early Antigen Complex in the EBV Lytic Cycle

Author:

Koshy Joyce1,Das V. G. Kumar2,Balabaskaran S.3,Ng S. W.1,Wahab Norhanom4

Affiliation:

1. Institute for Postgraduate Studies and Research, University of Malaya, Kuala Lumpur 50603, Malaysia

2. Department of Chemistry, University of Malaya, Kuala Lumpur 50603, Malaysia

3. Department of Biochemistry, University of Malaya, Kuala Lumpur 50603, Malaysia

4. Institute of Biological Sciences, University of Malaya, Kuala Lumpur 50603, Malaysia

Abstract

Triphenyltin coumarin-3-carboxylate and its coordination complexes with ethanol, triphenylphosphine oxide, triphenylarsine oxide, diphenylcyclopropenone and quinoline N-oxide exhibited high in vitro cytotoxicity (LC50 values in the range 0.25-3.4 μg/mL) when tested against EBV-DNA positive Raji cells and P-388 leukaemia cells, compared to the standard drug 5-Fluorouracil, which showed LC50 values of 11 and >50 μg/mL, respectively, against these cells. Additional tests performed on the Raji cells incubated with the quinoline N-oxide complex in the presence of the tumour promoters, TPA and sodium butyrate, revealed that the diffused and restricted protein components of the early antigen complex were suppressed relative to the control containing only the promoters, indicating impaired function of the genes involved as transactivators in the early lytic cycle of the EBV. The failure of the restriction enzymes Eco R1 and Hind III to cleave the extracted DNA from such treated cells in contrast to the control, coupled with the amplification of the BMLF-1 gene by the PCR technique which was realised only with the DNA of the control and not of the treated sample, point to a punitive interaction of the organotin with the nuclear DNA of the Raji cells.

Publisher

Hindawi Limited

Subject

Inorganic Chemistry,Drug Discovery,Pharmacology,Toxicology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3