High Performance Damage-Resistant Seismic Resistant Structural Systems for Sustainable and Resilient City: A Review

Author:

Wang Junhua12ORCID,Zhao Hua2ORCID

Affiliation:

1. College of Civil Engineering, Nanjing Tech University, Nanjing, Jiangsu, China

2. State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu, Sichuan, China

Abstract

This paper presents a review of high performance damage-resistant seismic resistant structural (DRSRS) systems for the sustainable and resilient city. Firstly, the motivation and the basic principle as well as methodology of the developing DRSRS system are briefly illustrated. Then, the structural detailing and the seismic behaviors of three types of existing DRSRS systems, namely, the replaceable structural element (RSE), rocking seismic resisting structural (RSRS) system, and self-centering seismic resisting structural (SCSRS) system, are summarized in detail. The theoretical and extensive experimental study results indicated that the three existing types of DRSRS system can minimize the postdamage after loading. Types of energy dissipation devices and dampers, as well as fuse sections, can largely enhance the energy dissipation capacity of the proposed structural system. Many numerical and finite element models have been proposed to analyze the dynamic and static cyclic responses of them. The residual deformation after the dynamic response is smaller compared to that following the cyclic response. Then, the current research challenges of DRSRS system are illustrated, and the new research highlights that emerged in recent years are stated. Finally, the conclusions of this paper are summarized; furthermore, the recommendations for the future studies are pointed out at the end of the paper.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

Reference151 articles.

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3