An Improved Multiobjective Quantum-Behaved Particle Swarm Optimization Based on Double Search Strategy and Circular Transposon Mechanism

Author:

Han Fei1,Sun Yu-Wen-Tian1ORCID,Ling Qing-Hua1

Affiliation:

1. School of Computer Science and Communication Engineering, Jiangsu University, Zhenjiang, Jiangsu, China

Abstract

Although multiobjective particle swarm optimization (MOPSO) has good performance in solving multiobjective optimization problems, how to obtain more accurate solutions as well as improve the distribution of the solutions set is still a challenge. In this paper, to improve the convergence performance of MOPSO, an improved multiobjective quantum-behaved particle swarm optimization based on double search strategy and circular transposon mechanism (MOQPSO-DSCT) is proposed. On one hand, to solve the problem of the dramatic diversity reduction of the solutions set in later iterations due to the single search pattern used in quantum-behaved particle swarm optimization (QPSO), the double search strategy is proposed in MOQPSO-DSCT. The particles mainly learn from their personal best position in earlier iterations and then the particles mainly learn from the global best position in later iterations to balance the exploration and exploitation ability of the swarm. Moreover, to alleviate the problem of the swarm converging to local minima during the local search, an improved attractor construction mechanism based on opposition-based learning is introduced to further search a better position locally as a new attractor for each particle. On the other hand, to improve the accuracy of the solutions set, the circular transposon mechanism is introduced into the external archive to improve the communication ability of the particles, which could guide the population toward the true Pareto front (PF). The proposed algorithm could generate a set of more accurate and well-distributed solutions compared to the traditional MOPSO. Finally, the experiments on a set of benchmark test functions have verified that the proposed algorithm has better convergence performance than some state-of-the-art multiobjective optimization algorithms.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3