Predictive Analysis and Evaluation Model of Chronic Liver Disease Based on BP Neural Network with Improved Ant Colony Algorithm

Author:

Jiang Na1ORCID,Zhao Zhiwei1,Xu Pan1

Affiliation:

1. Department of Gastroenterology, Hankou Hospital, Wuhan 430012, Hube, China

Abstract

Timely prediction of the mechanism and characteristics of chronic liver disease using next-generation information technology is an effective way to improve the diagnosis rate of chronic liver disease. In this paper, we have proposed a modified backpropagation (BP) neural network with improved ant colony optimization algorithm to process multiple index attribute items describing chronic liver disease and construct a chronic liver disease assessment model. The proposed model is very effective in detecting chronic liver disease on time with acceptable level of accuracy and precision ratio. To verify these claims, the proposed scheme is checked experimentally where 125 groups of 20-dimensional medical test index data items of patients with chronic liver disease were analyzed. Moreover, 13-dimensional index items were preferentially selected as test index attribute items with high sensitivity to chronic liver disease using well-known ROC curves. The 13-dimensional index items were reduced to 5-dimensional comprehensive data items by principal component analysis. The proposed neural network-based model was trained with 115 sets of test indicator sample sets, and the remaining 10 sets of sample sets were used as test samples. Compared with the original 20-dimensional data as the neural network input, the proposed model not only reduces the complexity but also improves the prediction accuracy by 15.07%.

Publisher

Hindawi Limited

Subject

Health Informatics,Biomedical Engineering,Surgery,Biotechnology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3