Investigating Feature Ranking Methods for Sub-Band and Relative Power Features in Motor Imagery Task Classification

Author:

Mohdiwale Samrudhi1ORCID,Sahu Mridu1ORCID,Sinha G. R.2ORCID,Nisar Humaira3ORCID

Affiliation:

1. National Institute of Technology Raipur, Raipur, India

2. Myanmar Institute of Information Technology, Mandalay, Myanmar

3. Universiti Tunku Abdul Rahman, Kampar, Malaysia

Abstract

Interpreting the brain commands is now easier using brain-computer interface (BCI) technologies. Motor imagery (MI) signal detection is one of the BCI applications, where the movements of the hand and feet can be recognized via brain commands that can be further used to handle emergency situations. Design of BCI techniques encountered challenges of BCI illiteracy, poor signal to noise ratio, intersubject variability, complexity, and performance. The automated models designed for emergency should have lesser complexity and higher performance. To deal with the challenges related to the complexity performance tradeoff, the frequency features of brain signal are utilized in this study. Feature matrix is created from the power of brain frequencies, and newly proposed relative power features are used. Analysis of the relative power of alpha sub-band to beta, gamma, and theta sub-band has been done. These proposed relative features are evaluated with the help of different classifiers. For motor imagery classification, the proposed approach resulted in a maximum accuracy of 93.51% compared to other existing approaches. To check the significance of newly added features, feature ranking approaches, namely, mutual information, chi-square, and correlation, are used. The ranking of features shows that the relative power features are significant for MI task classification. The chi-square provides the best tradeoff between accuracy and feature space. We found that the addition of relative power features improves the overall performance. The proposed models could also provide quick response having reduced complexity.

Publisher

Hindawi Limited

Subject

Health Informatics,Biomedical Engineering,Surgery,Biotechnology

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3