Adsorption Mechanism of Cu-Doped SnO2 (110) Surface toward H2 Dissolved in Power Transformer

Author:

Wang Feng1,Fan Jingmin1,Sun Qiuqin1ORCID,Jiang Qinji1,Chen She1ORCID,Zhou Wu1ORCID

Affiliation:

1. College of Electrical and Information Engineering, Hunan University, Changsha 410082, China

Abstract

The content of hydrogen is a key quantity in condition assessment and fault diagnosis of power transformer. Based on the density functional theory (DFT), the adsorption mechanism of Cu-doped SnO2 surface toward H2 has been systematically studied in this work. Firstly, the relaxation, the bond length, and overlap population of both the pure and Cu-doped SnO2 are computed. To determine the optimal doping position, the formation energies of four potential sites (i.e., Sn5c, Sn6c, Sn5c-s, and Sn6c-s) are then compared with each other. The adsorption energy and the electronic structure of SnO2 surface are analysed and discussed in detail. Furthermore, to estimate the partial atomic charges and the electrical conductance, the Mulliken population analysis is also performed. It has been found that the bridge oxygen is the most favourable position. The partial density of states of H2 after adsorption is broadened and shifted close to the Fermi level. A large amount of charges would be transferred and then released back into its conduction band, leading to the reduction of resistance and the enhancement of sensitivity toward H2. The results of this work provide references for SnO2-based sensor design.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3