Research on Extraction Method of Multiple Narrow Channel Vessel Trajectory Feature in Yangtze River Based on VITS Data

Author:

Yan Xintong1,He Jie1,Ren Qiaoqiao1,Bai Chunguang1ORCID,Zhang Changjian1,Wang Chenwei1

Affiliation:

1. School of Transportation, Southeast University, Si pai lou, Nanjing 210096, China

Abstract

Vessel big data play a significant role in understanding vessel behaviors and thus facilitating the prosperity of waterway transportation. However, relevant research regarding vessel trajectory recognition in a broad range of narrow channels still lacks, especially using VITS data. The major objective of this paper is to conduct vessel trajectory analysis based on the novel VITS data and examine its availability in inland waterway vessel transportation. An alternate aim is to develop a more comprehensive framework to extract the vessel trajectory of multiple narrow waterways. This paper utilized vessel trajectory information of multiple narrow channels belonging to Yangtze River captured by VITS. Four compression algorithms were conducted. Additionally, the performances of three clustering approaches were evaluated. Speed distribution analysis was also implemented. The results indicated that slide window (SW) algorithm outperforms its other counterparts. Relative to DBSCAN, K-means and hierarchical clustering analysis (HCA) tend to be more capable of balanced classification. This paper is the first to utilize VITS data in vessel trajectory feature extraction and can potentially provide useful insight for vessel trajectory extraction in multiple narrow channels.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Strategy and Management,Computer Science Applications,Mechanical Engineering,Economics and Econometrics,Automotive Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3