A Refined Phase Unwrapping Method for High Noisy Dense Fringe Interferogram Based on Adaptive Cubature Kalman Filter

Author:

Liu Wanli1ORCID,Shao Jian2ORCID,Liu Zhenguo3ORCID,Gao Yang4ORCID

Affiliation:

1. School of Mathematics and Statistics, Xuzhou University of Technology, Xuzhou 221018, Jiangsu, China

2. School of Physics and New Energy, Xuzhou University of Technology, Xuzhou 221018, Jiangsu, China

3. School of Transportation Engineering, Jiangsu Vocational Institute of Architectural Technology, Xuzhou 221116, Jiangsu, China

4. International Digital Laboratory, University of Warwick, Coventry CV4 7AL, UK

Abstract

Cubature Kalman filter phase unwrapping (CKFPU) is an effective algorithm in unwrapping the interferograms. The local phase slope estimation is a key factor that affects the unwrapped accuracy. However, the estimation accuracy of local phase slop is relatively low in high noisy and dense stripes areas, which usually leads to the unsatisfactory unwrapped results. In order to effectively solve this issue, the rewrapped map of the unwrapped phase (obtained by CKFPU algorithm), which is a filtered interferogram with clearer fringes and more detailed information, is proposed in this paper to improve the phase slope estimation. In order to solve the problem of imprecise error variance for the new phase slope estimation, an adaptive factor is introduced into the CKFPU algorithm to increase the stability and reliability of the phase unwrapping algorithm. The proposed method is compared with the standard CKFPU algorithm using both simulated and real data. The experimental results validate the feasibility and superiority of the proposed method for processing those high noise dense fringe interferograms.

Funder

Natural Science Foundation of Jiangsu Province

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3