Prediction for Various Drought Classes Using Spatiotemporal Categorical Sequences

Author:

Niaz Rizwan1ORCID,Almazah Mohammed M. A.23,Zhang Xiang45ORCID,Hussain Ijaz1ORCID,Faisal Muhammad6

Affiliation:

1. Department of Statistics, Quaid-i-Azam University, Islamabad, Pakistan

2. Department of Mathematics, College of Sciences and Arts (Muhyil), King Khalid University, Muhyil 61421, Saudi Arabia

3. Department of Mathematics and Computer, College of Sciences, Ibb University, Ibb 70270, Yemen

4. National Engineering Research Center of Geographic Information System, School of Geography and Information Engineering, China University of Geosciences (Wuhan), Wuhan 430074, China

5. State Key Laboratory of Information Engineering in Surveying, Mapping, and Remote Sensing (LIESMARS), Wuhan University, Wuhan 430079, China

6. Faculty of Health Studies, University of Bradford, BD7 1DP, Bradford, UK

Abstract

Drought frequently spreads across large spatial and time scales and is more complicated than other natural disasters that can damage economic and other natural resources worldwide. However, improved drought monitoring and forecasting techniques can help to minimize the vulnerability of society to drought and its consequent influences. This emphasizes the need for improved drought monitoring tools and assessment techniques that provide information more precisely about drought occurrences. Therefore, this study developed a new method, Model-Based Clustering for Spatio-Temporal Categorical Sequences (MBCSTCS), that uses state selection procedures through finite mixture modeling and model-based clustering. The MBCSTCS uses the functional structure of first-order Markov model components for modeling each data group. In MBCSTCS, the suitable order K of the components is selected by Bayesian information criterion (BIC). In MBCSTCS, the estimated mixing proportions and the posterior probabilities are used to compute probability distribution associated with the future steps of transitions. Furthermore, MBCSTCS predicts drought occurrences in future time using spatiotemporal categorical sequences of various drought classes. The MBCSTCS is applied to the six meteorological stations in the northern area of Pakistan. Moreover, it is found that MBCSTCS provides expeditious information for the long-term spatiotemporal categorical sequences. These findings may be helpful to make plans for early warning systems, water resource management, and drought mitigation policies to decrease the severe effects of drought.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3