Least Trimmed Squares Approach to Lucas-Kanade Algorithm in Object Tracking Problems

Author:

Lin Yih-Lon1ORCID

Affiliation:

1. Department of Information Engineering, I-Shou University, Kaohsiung 84001, Taiwan

Abstract

The object tracking problem is an important research topic in computer vision. For real applications such as vehicle tracking and face tracking, there are many efficient and real-time algorithms. In this study, we will focus on the Lucas-Kanade (LK) algorithm for object tracking. Although this method is time consuming, it is effective in tracking accuracy and environment adaptation. In the standard LK method, the sum of squared errors is used as the cost function, while least trimmed squares is adopted as the cost function in this study. The resulting estimator is robust against outliers caused by noises and occlusions in the tracking process. Simulations are provided to show that the proposed algorithm outperforms the standard LK method in the sense that it is robust against the outliers in the object tracking problems.

Funder

National Science Council

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3