Affiliation:
1. Department of Information Engineering, I-Shou University, Kaohsiung 84001, Taiwan
Abstract
The object tracking problem is an important research topic in computer vision. For real applications such as vehicle tracking and face tracking, there are many efficient and real-time algorithms. In this study, we will focus on the Lucas-Kanade (LK) algorithm for object tracking. Although this method is time consuming, it is effective in tracking accuracy and environment adaptation. In the standard LK method, the sum of squared errors is used as the cost function, while least trimmed squares is adopted as the cost function in this study. The resulting estimator is robust against outliers caused by noises and occlusions in the tracking process. Simulations are provided to show that the proposed algorithm outperforms the standard LK method in the sense that it is robust against the outliers in the object tracking problems.
Subject
General Engineering,General Mathematics