Affiliation:
1. Qingdao Vocational and Technical College of Hotel Management, Qingdao, Shandong Province, 266100 Shandong, China
Abstract
To identify the most visually salient regions in a set of paired RGB and depth maps, in this paper, we propose a multimodal feature fusion supervised RGB-D image saliency detection network, which learns RGB and depth data by two independent streams separately, uses a dual-stream side-supervision module to obtain saliency maps based on RGB and depth features for each layer of the network separately, and then uses a multimodal feature fusion module to fuse the latter 3 layers of RGB and depth high-dimensional information to generate high-level significant prediction results. Experiments on three publicly available datasets show that the proposed network outperforms the current mainstream RGB-D saliency detection models with strong robustness due to the use of a dual-stream side-surveillance module and a multimodal feature fusion module. We use the proposed RGB-D SOD model for background defocusing in realistic scenes and achieve excellent visual results.
Subject
Electrical and Electronic Engineering,Instrumentation,Control and Systems Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献