Investigation of Phonon Vibrational Modes in Ga, Al, Fe, Co, Ni, and Zn Doped (110)-Oriented PBCO Thin Films

Author:

Kandel Hom1ORCID,Iliev Milko2,Arndt Nathan1,Chen Tar-Pin3ORCID

Affiliation:

1. Department of Physics, University of Wisconsin-Parkside, Kenosha, WI 53144, USA

2. Texas Center for Superconductivity, University of Houston, Houston, TX 77204, USA

3. Department of Physics and Astronomy, University of Arkansas, Little Rock, AR 72204, USA

Abstract

We performed Raman scattering measurements and a comprehensive study of different types of Raman modes associated with phonon vibrations on pure and Ga, Al, Fe, Co, Ni, and Zn doped (110)-oriented PrBa2Cu3O7 (PBCO) thin films to identify the substitution of Cu (1) or Cu (2) ions in PBCO lattice. In Raman spectrum of (110)–oriented PBCO thin film, we observed four prominent Ag type Raman modes at ∼130 cm−1, ∼150 cm−1, ∼440 cm−1, and ∼520 cm−1 corresponding to Ba, Cu (2), O (2)–O (3) in-phase, and O (4) apical oxygen vibration along c-axis, respectively. The Raman mode of pure PBCO at ∼520 cm−1 softened on Ga, Al, Fe, and Co doped PBCO thin films while it remained unaffected on Zn and Ni doped PBCO thin films. We explain these results in the context of their correlation with Cu (1)–O (4) and Cu (2)–O (4) bond lengths. In addition, we observed a new Raman mode near 610 cm−1 in the Raman spectra of Ga, Al, Fe, and Co doped PBCO thin films, an infrared (IR) active mode that became Raman active when the symmetry was broken at the Cu-O chain site after the partial substitution of Cu (1) ion. Moreover, the “O (2)–O (3) in-phase Raman mode” near 440 cm−1 remained unaffected in Fe, Co, Ga, and Al doped PBCO thin films but softened in Zn and Ni doped PBCO thin films. Based on these results, we argue that Ga, Al, Fe, and Co ions replace Cu (1) ion at the Cu-O chain site, break the crystal symmetry, and produce disorder locally, whereas Zn and Ni ions replace Cu (2) ion at the CuO2 plane of the PBCO lattice structure.

Funder

WiSys and UW System Applied Research

Publisher

Hindawi Limited

Subject

General Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3