Shear Stress Triggers Angiogenesis of Late Endothelial Progenitor Cells via the PTEN/Akt/GTPCH/BH4 Pathway

Author:

Wu Shao-Hong1ORCID,Zhang Feng2,Yao Shun3ORCID,Tang Lu4,Zeng Hai-Tao5ORCID,Zhu Ling-Ping2ORCID,Yang Zhen6ORCID

Affiliation:

1. Department of Ultrasound, The First Affiliated Hospital, Sun Yat-Sen University, 58 2nd Zhongshan Road, Guangzhou, 510080, China

2. Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, China

3. Department of Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Science, Guangzhou, 510080, China

4. Department of Geriatric Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, China

5. Center for Reproductive Medicine, The Sixth Affiliated Hospital, Sun Yat-Sen University, 58, 2nd Village Cross Road, Guangzhou, 510080, China

6. Division of Emergency Medicine, Department of General Internal Medicine, Department of Emergency Intensive Care Unit & Department of Cardiology & Key Laboratory on Assisted Circulation, Ministry of Health, The First Affiliated Hospital, Sun Yet-Sen University, 58 2nd Zhongshan Road, Guangzhou, 510080, China

Abstract

Background. Shear stress is an effective modulator of endothelial progenitor cells (EPCs) and has been suggested to play an important role in angiogenesis. The phosphatase and tensin homolog (PTEN)/Akt and guanosine triphosphate cyclohydrolase (GTPCH)/tetrahydrobiopterin (BH4) pathways regulate the function of early EPCs. However, the role of these pathways in the shear stress-induced angiogenesis of late EPCs remains poorly understood. Therefore, we aim to investigate whether shear stress could upregulate the angiogenesis capacity of late EPCs and to further explore the possible underlying mechanisms. Methods. Late EPCs were subjected to laminar shear stress (LSS), and their in vitro migration, proliferation, and tube formation capacity were determined. In addition, the in vivo angiogenesis capacity was explored, along with the expression of molecules involved in the PTEN/Akt and GTPCH/BH4 pathways. Results. LSS elevated the in vitro activities of late EPCs, which were accompanied by downregulated PTEN expression, accelerated Akt phosphorylation, and GTPCH/BH4 pathway activation (all P<0.05). Following Akt inhibition, LSS-induced upregulated GTPCH expression, BH4, and NO level of EPCs were suppressed. LSS significantly improved the migration, proliferation, and tube formation ability (15 dyn/cm2 LSS vs. stationary: 72.2±5.5 vs. 47.3±7.3, 0.517±0.05 vs. 0.367±0.038, and 1.664±0.315 vs. 1±0, respectively; all P<0.05) along with the in vivo angiogenesis capacity of late EPCs, contributing to the recovery of limb ischemia. These effects were also blocked by Akt inhibition or GTPCH knockdown (P<0.05, respectively). Conclusions. This study provides the first evidence that shear stress triggers angiogenesis in late EPCs via the PTEN/Akt/GTPCH/BH4 pathway, providing a potential nonpharmacologic therapeutic strategy for promoting angiogenesis in ischemia-related diseases.

Funder

International Scientific and Technological Cooperation Project of Guangzhou Economic and Technological Development Zone

Publisher

Hindawi Limited

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3