Affiliation:
1. School of Electrical Engineering and Electronic Information, Xihua University, Chengdu 610039, China
2. Sichuan Provincial Key Laboratory of Signal and Information Processing, Xihua University, Chengdu 610039, China
Abstract
The actual operating state of the wind turbine group is influenced by the wake effect and control mode; however, the current models cannot describe the actual operating state very well. A dynamic equivalent modeling method for a doubly fed wind power generator is proposed on the basis of ensuring the accurate description of the wind turbine group. As the clustering index, dominant variables are used in the hierarchical clustering algorithm, which are extracted by principal component analysis. Three dynamic equivalent models of 24 wind turbines are established using PSCAD software platform, which use 13 state variables, wind speed, and dominant variables as clustering indexes, respectively. Furthermore, the active power and reactive power output curves of wind farm are simulated in the case of the three-phase short-circuit fault on the system side or wind speed fluctuation, respectively. The simulation results demonstrate that it is reasonable and effective to extract slip ratio and wind turbine torque as clustering index, and the maximal relative error between the dominant variable equivalent model and 13-state-variable model is only 9.9%, which is greatly lower than that of the wind speed model, K-means clustering model, neural network model, and support vector machine model. This model is easy to implement and has wider application prospect, especially for characteristics analysis of large-scale wind farm connected to power grid.
Subject
General Engineering,General Mathematics
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献