Propranolol Suppresses Proliferation and Migration of HUVECs through Regulation of the miR-206/VEGFA Axis

Author:

Zhang Ting1,Qian Yingying1,Yuan Chunyu1,Wu Yafen1,Qian Hua1,Lu Hui1,Hu Cui1,Li Wei1ORCID

Affiliation:

1. Department of Dermatology, Children’s Hospital of Soochow University, Suzhou, Jiangsu Province 215025, China

Abstract

Propranolol has been used in the first-line therapy of infantile hemangioma (IH) for a number of years; however, the mechanisms through which propranolol regulates IH are not yet fully understood. In the present study, microRNA (miRNA/miR) sequencing analysis was performed to identify differentially expressed miRNAs in human umbilical vascular endothelial cells (HUVECs) treated with propranolol. Cell viability and apoptosis were detected using CCK-8 assay and flow cytometry, respectively. Cell migration was assessed using wound healing, Transwell, and tube formation assays. Methylation-specific PCR was then used to investigate the promoter methylation status. The levels of oxidative stress indicators, including superoxide dismutase, glutathione, and malondialdehyde were also detected. Finally, cell cycle analysis was performed using flow cytometry and western blotting. It was observed that propranolol induced the upregulation of miR-206 in HUVECs, which was caused by demethylation of the miR-206 promoter. Moreover, propranolol significantly inhibited the proliferation of HUVECs by inducing apoptosis, while these phenomena were reversed by miR-206 antagomir. VEGFA was found to be a target gene of miR-206. In addition, propranolol notably inhibited the migration and induced G1 arrest of the HUVECs, whereas these results were eliminated by miR-206 antagomir. Collectively, the findings of the present study demonstrated that propranolol may inhibit the proliferation and migration in HUVECs via modulating the miR-206/VEGFA axis. These findings suggest a novel mechanism through which propranolol suppresses the progression of IH.

Funder

Basic research on the application of people’s livelihood technology in medical and health care in Suzhou

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3