Music Feature Classification Based on Recurrent Neural Networks with Channel Attention Mechanism

Author:

Gan Jie1ORCID

Affiliation:

1. Huanghuai University, Zhumadian, Henan 463000, China

Abstract

With the advancement of multimedia and digital technologies, music resources are rapidly increasing over the Internet, which changed listeners’ habits from hard drives to online music platforms. It has allowed the researchers to use classification technologies for efficient storage, organization, retrieval, and recommendation of music resources. The traditional music classification methods use many artificially designed acoustic features, which require knowledge in the music field. The features of different classification tasks are often not universal. This paper provides a solution to this problem by proposing a novel recurrent neural network method with a channel attention mechanism for music feature classification. The music classification method based on a convolutional neural network ignores the timing characteristics of the audio itself. Therefore, this paper combines convolution structure with the bidirectional recurrent neural network and uses the attention mechanism to assign different attention weights to the output of the recurrent neural network at different times; the weights are assigned for getting a better representation of the overall characteristics of the music. The classification accuracy of the model on the GTZAN data set has increased to 93.1%. The AUC on the multilabel labeling data set MagnaTagATune has reached 92.3%, surpassing other comparison methods. The labeling of different music labels has been analyzed. This method has good labeling ability for most of the labels of music genres. Also, it has good performance on some labels of musical instruments, singing, and emotion categories.

Publisher

Hindawi Limited

Subject

Computer Networks and Communications,Computer Science Applications

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3