A Dual Discriminator Adversarial Learning Approach for Dental Occlusal Surface Reconstruction

Author:

Tian Sukun1ORCID,Huang Renkai12ORCID,Li Zhenyang1ORCID,Fiorenza Luca3ORCID,Dai Ning4ORCID,Sun Yuchun5ORCID,Ma Haifeng1ORCID

Affiliation:

1. School of Mechanical Engineering, Shandong University, Jinan 250061, China

2. School of Mechanical and Electrical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China

3. Biomedicine Discovery Institute, Monash University, Melbourne, Victoria 3800, Australia

4. College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

5. Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing 100081, China

Abstract

Objective. Restoring the correct masticatory function of partially edentulous patient is a challenging task primarily due to the complex tooth morphology between individuals. Although some deep learning-based approaches have been proposed for dental restorations, most of them do not consider the influence of dental biological characteristics for the occlusal surface reconstruction. Description. In this article, we propose a novel dual discriminator adversarial learning network to address these challenges. In particular, this network architecture integrates two models: a dilated convolutional-based generative model and a dual global-local discriminative model. While the generative model adopts dilated convolution layers to generate a feature representation that preserves clear tissue structure, the dual discriminative model makes use of two discriminators to jointly distinguish whether the input is real or fake. While the global discriminator focuses on the missing teeth and adjacent teeth to assess whether it is coherent as a whole, the local discriminator aims only at the defective teeth to ensure the local consistency of the generated dental crown. Results. Experiments on 1000 real-world patient dental samples demonstrate the effectiveness of our method. For quantitative comparison, the image quality metrics are used to measure the similarity of the generated occlusal surface, and the root mean square between the generated result and the target crown calculated by our method is 0.114 mm. In qualitative analysis, the proposed approach can generate more reasonable dental biological morphology. Conclusion. The results demonstrate that our method significantly outperforms the state-of-the-art methods in occlusal surface reconstruction. Importantly, the designed occlusal surface has enough anatomical morphology of natural teeth and superior clinical application value.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Health Informatics,Biomedical Engineering,Surgery,Biotechnology

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3