Extended Statement of the Optimal Control Problem and Machine Learning Approach to Its Solution

Author:

Shmalko Elizaveta1ORCID,Diveev Askhat1ORCID

Affiliation:

1. Federal Research Center “Computer Science and Control” of the Russian Academy of Sciences, Moscow 119333, Russia

Abstract

Engineers strive to realize the goal of control in the best possible way based on a given quality criterion when developing control system. The well-known optimal control problem requires finding a solution as a function of time. Such a function cannot be directly used to control a real object because its application corresponds to an open-loop control system and engineers usually complete it with a feedback stabilization system. Hence, there is an obvious need to reformulate the optimal control problem so that its solution can be directly applied to real objects. The paper presents a new extended statement of the optimal control problem. An additional requirement for the control function is introduced to give the system describing the control object properties that will ensure the stability of solutions. The desired control function must provide for the optimal trajectory given the properties of the attractor in the neighbourhood. The solution to the extended optimal control problem can be directly used to control a real object. The paper presents a computational machine learning approach to solving the extended problem of optimal control based on the application of a synthesized optimal control technique. Examples of the practical solution to the stated problem are given to illustrate the efficiency of the approach, where the solution to the conventional optimal control problem is compared with the proposed extended one in the presence of perturbations in models and initial conditions.

Funder

Federal Target Program

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3