A Low-Cost Named Entity Recognition Research Based on Active Learning

Author:

Huang Han1ORCID,Wang Hongyu2ORCID,Jin Dawei1ORCID

Affiliation:

1. School of Information and Safety Engineering, Zhongnan University of Economics and Law, Wuhan 430073, China

2. School of Information Management, Wuhan University, Wuhan 430072, China

Abstract

Named entity recognition (NER) is an indispensable and very important part of many natural language processing technologies, such as information extraction, information retrieval, and intelligent Q & A. This paper describes the development of the AL-CRF model, which is a NER approach based on active learning (AL). The algorithmic sequence of the processes performed by the AL-CRF model is the following: first, the samples are clustered using the k-means approach. Then, stratified sampling is performed on the produced clusters in order to obtain initial samples, which are used to train the basic conditional random field (CRF) classifier. The next step includes the initiation of the selection process which uses the criterion of entropy. More specifically, samples having the highest entropy values are added to the training set. Afterwards, the learning process is repeated, and the CRF classifier is retrained based on the obtained training set. The learning and the selection process of the AL is running iteratively until the harmonic mean F stabilizes and the final NER model is obtained. Several NER experiments are performed on legislative and medical cases in order to validate the AL-CRF performance. The testing data include Chinese judicial documents and Chinese electronic medical records (EMRs). Testing indicates that our proposed algorithm has better recognition accuracy and recall rate compared to the conventional CRF model. Moreover, the main advantage of our approach is that it requires fewer manually labelled training samples, and at the same time, it is more effective. This can result in a more cost effective and more reliable process.

Funder

Zhongnan University of Economics and Law

Publisher

Hindawi Limited

Subject

Computer Science Applications,Software

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Biomedical Named Entity Recognition with BiLSTM-EDA: A Deep Learning Approach;Lecture Notes in Networks and Systems;2024

2. Named entity recognition for natural language understanding using BERT model;4TH INTERNATIONAL SCIENTIFIC CONFERENCE OF ALKAFEEL UNIVERSITY (ISCKU 2022);2023

3. Sinhala Named Entity Recognition Model: Domain-Specific Classes in Sports;2022 4th International Conference on Advancements in Computing (ICAC);2022-12-09

4. A Reinforced Active Learning Sampling for Cybersecurity NER Data Annotation;2022 OITS International Conference on Information Technology (OCIT);2022-12

5. LINYA: Name Entity Recognition Web-based Text Annotation;2022 15th International Conference on Advanced Computer Theory and Engineering (ICACTE);2022-09-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3