Affiliation:
1. Key Laboratory of Computer Network Technology of Jiangsu Province, School of Cyber Science and Engineering, Southeast University, Nanjing, China
2. School of Computer Science and Engineering, Southeast University, Nanjing, China
Abstract
In Location-Based Services (LBSs) platforms, such as Foursquare and Swarm, the submitted position for a share or search leads to the exposure of users’ activities. Additionally, the cross-platform account linkage could aggravate this exposure, as the fusion of users’ information can enhance inference attacks on users’ next submitted location. Hence, in this paper, we propose GLPP, a personalized and continuous location privacy-preserving framework in account linked platforms with different LBSs (i.e., search-based LBSs and share-based LBSs). The key point of GLPP is to obfuscate every location submitted in search-based LBSs so as to defend dynamic inference attacks. Specifically, first, possible inference attacks are listed through user behavioral analysis. Second, for each specific attack, an obfuscation model is proposed to minimize location privacy leakage under a given location distortion, which ensures submitted locations’ utility for search-based LBSs. Third, for dynamic attacks, a framework based on zero-sum game is adopted to joint specific obfuscation above and minimize the location privacy leakage to a balanced point. Experiments on real dataset prove the effectiveness of our proposed attacks in Accuracy, Certainty, and Correctness and, meanwhile, also show the performance of our preserving solution in defense of attacks and guarantee of location utility.
Funder
National Natural Science Foundation of China
Subject
Computer Networks and Communications,Information Systems
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献