Channel Characterization and Path Loss Modeling in Indoor Environment at 4.5, 28, and 38 GHz for 5G Cellular Networks

Author:

Majed Mohammed Bahjat12ORCID,Rahman Tharek Abd1ORCID,Aziz Omar Abdul1,Hindia Mohammad Nour3ORCID,Hanafi Effariza3

Affiliation:

1. Wireless Communication Center (WCC), Faculty of Electrical Eng, Universiti Teknologi Malaysia (UTM), Johor, Malaysia

2. College of Science and Technology, University of Human Development (UHD), Assulaymaniyah, KRG, Iraq

3. Department of Electrical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia

Abstract

The current propagation models used for frequency bands less than 6 GHz are not appropriate and cannot be applied for path loss modeling and channel characteristics for frequency bands above 6 GHz millimeter wave (mmWave) bands, due to the difference of signal propagation characteristics between existing frequency bands and mmWave frequency bands. Thus, extensive studies on channel characterization and path loss modeling are required to develop a general and appropriate channel model that can be suitable for a wide range of mmWave frequency bands in its modeling parameter. This paper presents a study of well-known channel models for an indoor environment on the 4.5, 28, and 38 GHz frequency bands. A new path loss model is proposed for the 28 GHz and 38 GHz frequency bands. Measurements for the indoor line-of-sight (LOS) and non-line-of-sight (NLOS) scenarios were taken every meter over a separation distance of 23 m between the TX and RX antenna locations to compare the well-known and the new large-scale generic path loss models. This measurement was conducted in a new wireless communication center WCC block P15a at Universiti Teknologi Malaysia UTM Johor, Malaysia, and the results were analyzed based on the well-known and proposed path loss models for single-frequency and multifrequency models and for directional and omnidirectional path loss models. Results show that the large-scale path loss over distance could be modeled better with good accuracy by using the simple proposed model with one parameter path loss exponent PLE (n) that is physically based to the transmitter power, rather than using the well-known models that have no physical base to the transmitted power, more complications (require more parameters), and lack of anticipation when explaining model parameters. The PLE values for the LOS scenario were 0.92, 0.90, and 1.07 for the V-V, V-H, and V-Omni antenna polarizations, respectively, at the 28 GHz frequency and were 2.30, 2.24, and 2.40 for the V-V, V-H, and V-Omni antenna polarizations, respectively, at the 38 GHz frequency.

Funder

University of Malaya Research University

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering

Cited by 43 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3