Affiliation:
1. Mechanical Engineering College, Taiyuan University of Science and Technology, Taiyuan, Shanxi 030024, China
Abstract
The design optimization of crane metallic structures is of great significance in reducing their weight and cost. Although it is known that uncertainties in the loads, geometry, dimensions, and materials of crane metallic structures are inherent and inevitable and that deterministic structural optimization can lead to an unreliable structure in practical applications, little amount of research on these factors has been reported. This paper considers a sensitivity analysis of uncertain variables and constructs a reliability-based design optimization model of an overhead traveling crane metallic structure. An advanced first-order second-moment method is used to calculate the reliability indices of probabilistic constraints at each design point. An effective ant colony optimization with a mutation local search is developed to achieve the global optimal solution. By applying our reliability-based design optimization to a realistic crane structure, we demonstrate that, compared with the practical design and the deterministic design optimization, the proposed method could find the lighter structure weight while satisfying the deterministic and probabilistic stress, deflection, and stiffness constraints and is therefore both feasible and effective.
Funder
National Natural Science Foundation of China
Subject
General Engineering,General Mathematics
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献