Modified SIFT Descriptors for Face Recognition under Different Emotions

Author:

Neeru Nirvair1ORCID,Kaur Lakhwinder1

Affiliation:

1. Punjabi University, Patiala 147002, India

Abstract

The main goal of this work is to develop a fully automatic face recognition algorithm. Scale Invariant Feature Transform (SIFT) has sparingly been used in face recognition. In this paper, a Modified SIFT (MSIFT) approach has been proposed to enhance the recognition performance of SIFT. In this paper, the work is done in three steps. First, the smoothing of the image has been done using DWT. Second, the computational complexity of SIFT in descriptor calculation is reduced by subtracting average from each descriptor instead of normalization. Third, the algorithm is made automatic by using Coefficient of Correlation (CoC) instead of using the distance ratio (which requires user interaction). The main achievement of this method is reduced database size, as it requires only neutral images to store instead of all the expressions of the same face image. The experiments are performed on the Japanese Female Facial Expression (JAFFE) database, which indicates that the proposed approach achieves better performance than SIFT based methods. In addition, it shows robustness against various facial expressions.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Hardware and Architecture,Mechanical Engineering,General Chemical Engineering,Civil and Structural Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Spatial deep feature augmentation technique for FER using genetic algorithm;Neural Computing and Applications;2023-12-14

2. Artificial Emotional Intelligence: Conventional and deep learning approach;Expert Systems with Applications;2023-02

3. Research Advanced in Deep Learning Based Image Recognition;2022 IEEE 4th International Conference on Civil Aviation Safety and Information Technology (ICCASIT);2022-10-12

4. Emotion recognition using support vector machine and one-dimensional convolutional neural network;Multimedia Tools and Applications;2021-05-14

5. Facial Expression Recognition of Instructor Using Deep Features and Extreme Learning Machine;Computational Intelligence and Neuroscience;2021-04-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3